
Predicting Vulnerability Through Complexity
Metric

Swarsha Kashyap#1, Kumar Rajnish*2

1,2 Department of Computer Science & Engineering, Birla Institute of Technology, Mesra

Ranchi, Jharkhand, India

Abstract— Now a day, in high technology world, the most
common problem is software security. Vulnerability is the
weakness in the software system which allows the attacker to
reduce system’s integrity. If the security failure is not known,
then it is challenging to detect vulnerability as security concerns
are not known in the early phase of the software process.
Complexity metric can be measured in the starting stage of
software process such as design or coding. As the plenty of
metric is developed to indicate security, but till the date relation
between complexity metric and vulnerability is not established. If
empirical relation can be developed between complexity metric
and vulnerability then, these metrics can help software
developers to take provident actions against software
vulnerability. The main objective is to investigate whether
complexity metric can be used to predict vulnerability. We have
taken two versions of Mozilla Firefox to provide empirical
evidence on how vulnerability is related to complexity metric. It
is found that some of the complexity metrics are correlated to
vulnerabilities at a statistically significant level. Since, different
design and code level metric are available, still we examine
which code or design level metric is better to predict
vulnerability. We observe that the correlation pattern is same for
both the versions of Mozilla Firefox which means that
vulnerability can be predicted using complexity metric.

Keywords— Complexity Metric, Software Security,
Vulnerability.

I. INTRODUCTION

Software security is the most crucial thing in software
engineering. Occurrence of security failure will be
negligible in the absence of vulnerability present in the
software. Generally, vulnerability is found during software
development. Most of the time in software process, we
generally deal with the security as it is hard to determine
vulnerability if that is not known by its own. For that
reason, it is significant to understand the software security
attribute that can determine vulnerability.

Oftentimes, software security is used to attain the goals
that are already decided. A software metric can be defined
as the measurement of the part of the software.
Complexity can be measured during various software
development stages (such as design or coding) and are
used for the evaluation of the software security. This
implies that if the number of vulnerabilities are less then
this results in highly secured system and vice-versa.

In this work, an investigation has been made that how
the complexity metric can be used to predict vulnerability.
So, it is important to develop a complexity metric for a
class and to find the correlation between complexity
metric and vulnerability. To achieve this goal, first we
have used the RSM (Resource Standard Metric) tool to

calculate the lines of code, number of variables and
number of method per class for the two versions of
Mozilla Firefox browser. Then, the values of the constants
are determined by MATLAB code and corresponding
complexity metric for a class is generated.
Finally, IBM SPSS Statistics tool is used to find the
correlation of propose metric with the existing metric in
order to predict vulnerability. This is the first objective.
The second objective is to prove that the code level
metrics are better indicator than the design level metric.

The existing metric that we have used is DIT (Depth of
Inheritance) and WMC (Weighted Methods per Class).
DIT (Depth of Inheritance) can be defined as the
maximum depth of the class in the inheritance tree. The
deeper the class is in the inheritance hierarchy, the greater
the number of the methods it is likely to inherit, making it
more complex to predict its behaviour [1]. Weighted
Methods per Class (WMC) is the number of local methods
defined in the class. WMC is related to size complexity.
Chidamber [3] et al. empirically validated that the number
of methods and complexity of the methods involved is an
indicator of development and maintainability complexity.

The rest of the paper is organized as follows. Section II
is review work, Section III discusses the propose
complexity metric, Section IV presents the result, Section
V describes interpretation from the results and Section VI
includes conclusion and future scope.

II. REVIEW OF EXISTING WORK

Ayaz Isazadeh et al. [2] proposed a mathematical
based method for evaluating and quantifying software
security using the coupling aspects of the software
architecture. To achieve this goal, first, he showed the
relationship between coupling types and vulnerability
using an empirical-based software engineering
technique that adopts Mozilla Firefox Browser
vulnerability data. Then, he proposed a mathematical
weighted relationship between coupling types and
vulnerability, where regression statistical analysis and
Mozilla Firefox vulnerability data are used to predicate
the relationship coefficients. Finally, he extracted
software architecture using DAGC tool and then
convert the extracted architecture into Discrete Time
Markov chains, which are used to predict and compute
the system over all vulnerability.

III. PROPOSE COMPLEXITY METRIC

This section presents the proposed metric named CMC
(Complexity Metric for A Class) which is used for

Swarsha Kashyap et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 417-420

www.ijcsit.com 417

measuring the complexity for an object – oriented class.
The CMC is based upon the following assumptions:
While calculating number of methods for a class, the
user focuses on number of variables also.
The number of methods tells us that how much time is
required to develop and maintain the class.
Number of variables are counted as the number of
attributes.
A local variable of same name used in two different
blocks is considered to have two distinct variable
names.

To calculate CMC, Lines of Code of the entire class
(LOC), the Number of Methods Per Class (NOMPC)
and the Number of Variables (NOV) have been taken.
The formula for CMC is:
CMC = a + b*NOMPC + c *NOV +d*LOC
where, the weights ‘b’, ‘c’, ‘d’ and the constant ‘a’ are
derived at by least square regression analysis.

Note that when all method complexities are
considered to be unity, the WMC metric proposed by
Chidamber and Kemerer, C&K [3] is obtained from
NOMPC.

We have given the details of our approach. The
variables of interest in our study are: LOC, NOV,
NOMPC, DIT and the Vulnerability, which is to be
modeled by our metric. The above-mentioned variables
were collected for classes from two different versions of
Mozilla Firefox. The data set was generated by using
the Resource Standard Metric Tool [4]. Then, we have
used MATLAB to obtain the Complexity Metric for a
class. Finally, IBM SPSS Statistics tool is taken into
consideration by using graphical measures and different
statistical techniques i.e. mean, median, mode, standard
deviation, variance and many more.

To investigate, how vulnerability are related to
CMC and DIT Metrics, two hypotheses have been
presented, shown in Table [1].

Because high complexity metric make
understanding, developing, testing, and maintaining
software difficult and may lead to introduction of
vulnerabilities.

To validate hypotheses, design level metric DIT
(Depth of Inheritance) [1] and proposed code level
metric CMC have been chosen. We analyze their
correlation with vulnerabilities [Table 3,5], then we
presented empirical study on two versions on Mozilla
Firefox [5], a popular open source browser.

IV. RESULTS

This section presents the summary statistics,
correlation coefficient and graphs for two versions of
Mozilla Firefox [5]. The summary statistics of two
versions of Mozilla Firefox are shown in Table 4 and
Table 5. The correlation coefficient for two versions are
shown in Table 2 and Table 2. Bar graph among
different parameters for version 1 and version 2 are
shown in Figure 1, Figure 2, Figure 3, Figure 4, Figure
5 and Figure 6.

V. INTERPRETATION FROM THE RESULTS

This section tests the hypothesis by computing the
correlation between the CMC and Vulnerabilities, and
DIT and Vulnerabilities. Basically, the value of the
correlation coefficient provides the strength of the
relationship. However, the interpretation depends on the
context of the usage of correlation. As suggested by
Cohen et al. [6], correlation of less than 0.3 means weak
correlation, 0.3 to 0.5 means medium correlation, and
greater than 0.5 means strong correlation. We follow the
concept of Cohen et al. [6] to analyze the strength of
correlation.

Fig. 1 CMC and VUL Version 1 Bar Graph

Fig. 2 CMC and VUL Version 2 Bar Graph

Fig. 3 CMC and DIT Version 1 Bar Graph

0

2

4

6

8

10

1

3
1

6
1

9
1

1
2
1

1
5
1

1
8
1

2
1
1

2
4
1

2
7
1

3
0
1

3
3
1

3
6
1

3
9
1

4
2
1

4
5
1

4
8
1

VUL CMC

0

2

4

6

8

10

12

1

3
1

6
1

9
1

1
2
1

1
5
1

1
8
1

2
1
1

2
4
1

2
7
1

3
0
1

3
3
1

3
6
1

3
9
1

4
2
1

4
5
1

4
8
1

VUL CMC

0

2

4

6

8

1

3
1

6
1

9
1

1
2
1

1
5
1

1
8
1

2
1
1

2
4
1

2
7
1

3
0
1

3
3
1

3
6
1

3
9
1

4
2
1

4
5
1

4
8
1

DIT CMC

Swarsha Kashyap et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 417-420

www.ijcsit.com 418

Fig. 4 CMC and DIT Version 2 Bar Graph

Fig. 5 LOC, NOV and NOMPC Version 1 Bar Graph

Fig. 6 LOC, NOV and NOMPC Version 2 Bar Graph

Table 1 Hypotheses
Hypothesis 1 Complexity Metric positively correlate to the number of

vulnerability.

Hypothesis 2 Code level complexity metric are better indicators of
vulnerabilities than design level metric.

Table 2 Version 1 Correlation Coefficient

Variables Pearson
Correlation

Kendall’s
Correlation

Spearman’s
Correlation

CMC LOC 0.721 0.533 0.571

CMC NOV 0.486 0.366 0.450

CMC NOMPC 0.642 0.483 0.568

CMC DIT 0.146 0.128 0.131

CMC VUL 0.117 0.913 0.918

VUL DIT 0.336 0.422 0.419

Table 3 Version 2 Correlation Coefficient

Variables Pearson
Correlation

Kendall’s
Correlation

Spearman’s
Correlation

CMC LOC 0.319 0.109 0.124

CMC NOV 0.892 0.757 0.813

CMC NOMPC 0.268 0.127 0.154

CMC DIT 0.084, -0.077 -0.186 -0.226

CMC VUL 0.682 0.421 0.418

VUL DIT 0.684 0.798 0.798

Table 4 Descriptive Statistics for Version 1

N LOC NOV NOMPC DIT VUL CMC

Valid 500 500 500 500 500 500

Missing 0 0 0 0 0 0

Mean 170.56 1.07 0.94 0.65 2.00 .595956

Median 41.00 .00 .00 .00 2.00 .238800

Mode 4 0 0 0 0 .4724

Std.
Deviation

382.360 3.612 2.476 .775 1.661 .9800879

Variance 146199.040 13.049 6.128 .601 2.757 .961

Skewness 4.639 6.044 4.687 .697 .665 3.261

Std. Error
of

Skewness
.109 .109 .109 .109 .109 .109

Kurtosis 26.627 47.379 30.785
-

1.001
-.014 13.322

Std. Error
of Kurtosis

.218 .218 .218 .218 .218 .218

Minimum 1 0 0 0 0 .0033

Maximum 3592 40 26 2 8 7.6149

Table 5 Descriptive Statistics for Version 2

N LOC NOV NOMPC DIT VUL CMC

Valid 499 499 499 499 499 499

Missing 0 0 0 0 0 0

Mean 19.29 5.20 .35 .05 2.04 1.045224

Median 6.00 3.00 .00 .00 2.00 .758900

Mode 5 2 0 0 1 .7589

Std.
Deviation

60.674 7.543 1.869 .226 1.546 1.0153043

Variance 3681.370 56.897 3.494 .051 2.392 1.031

Skewness 7.054 5.380 7.728 3.954 .551 4.770

Std. Error of
Skewness

.109 .109 .109 .109 .109 .109

Kurtosis 54.219 39.482 68.387 13.687 -.595 32.097

Std. Error of
Kurtosis

.218 .218 .218 .218 .218 .218

Minimum 0 0 0 0 0 .2376

Maximum 580 76 22 1 7 10.2733

From Table 2 and Table 3 certain interesting
observations have been made:
From Table 2, it is observed that CMC correlates very
well with vulnerabilities especially in Kendall’s and
Spearman correlation than DIT less than CMC for
version 1.
From Table 3, it is found that, Pearson proved strong
correlation of CMC and DIT with vulnerability and in
Kendall’s or Spearman CMC provide medium

0

2

4

6

8

10

12

1

2
9

5
7

8
5

1
1
3

1
4
1

1
6
9

1
9
7

2
2
5

2
5
3

2
8
1

3
0
9

3
3
7

3
6
5

3
9
3

4
2
1

4
4
9

4
7
7

DIT CMC

0

1000

2000

3000

4000

1

4
0

7
9

1
1
8

1
5
7

1
9
6

2
3
5

2
7
4

3
1
3

3
5
2

3
9
1

4
3
0

4
6
9

LOC NOV NOMPC

0

200

400

600

1

4
0

7
9

1
1
8

1
5
7

1
9
6

2
3
5

2
7
4

3
1
3

3
5
2

3
9
1

4
3
0

4
6
9

LOC NOV NOMPC

Swarsha Kashyap et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 417-420

www.ijcsit.com 419

correlation than DIT. The one reason may be code
sometimes diverges from what is specified because
during the coding phase, the developer or programmer
may not follow the design specification.
Therefore, compared to design level metric(DIT), code
level metric(CMC) are supposed to be more strongly
correlated to vulnerabilities.

VI. CONCLUSION AND FUTURE SCOPE

In this paper, we provide empirical validation that
design level metrics are generally less secure. We find
that Complexity Metric for a class, CMC positively
correlate to the number of vulnerabilities at a
statistically significant level over both the versions of
Mozilla Firefox. The correlation is on average 0.5 with
a p-value less than 0.001. The code-level metrics(CMC)
is more strongly correlated to vulnerabilities than the
design-level metrics(DIT). We also observe that the
complexity metrics for a class(CMC) are consistently
correlates to vulnerabilities over two versions of
Mozilla Firefox. The stable correlation patterns imply
that, the complexity metrics can be dependably used to

indicate vulnerabilities for new releases as well. So, we
can say that the proposed complexity metric can be used
to predict vulnerability than the existing metric [1].
As we know that, code level metric strongly correlates to
the vulnerability than the design level metric, so in future
we can focus on code change process rather than code
properties to investigate the effect of security in software
process.

REFERENCES
[1] Chowdhury, and M. Zulkernine, “Using Complexity, Coupling,

and Cohesion Metrics as Early Indicators of Vulnerabilities”, In
Journal of Systems Architecture, pp. 57, 294313 (2011).

[2] Ayaz Isazadeh, Islam Elgedawy, Jaber Karimpour and Habib
Izadkhah, “An Analytical Security Model for Existing Software
Systems”, In Applied Mathematics & Information Sciences An
International Journal, pp. 691-702 (2014).

[3] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. on Software Eng., vol. 20, no. 6,
1994, pp. 476-493

[4] RSM tool http://msquaredtechnologies.com/m2rsm/
[5] Mercurial Mozilla Firefox https://hg.mozilla.org/releases
[6] J. Cohen, Statistical Power Analysis for the Behavioral Sciences

(2nd ed.), Academic Press New York, 1988.

Swarsha Kashyap et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 417-420

www.ijcsit.com 420

